(2,1)-Total labeling of planar graphs with large maximum degree
نویسندگان
چکیده
The (d,1)-total labelling of graphs was introduced by Havet and Yu. In this paper, we prove that, for planar graph G with maximum degree ∆ ≥ 12 and d = 2, the (2,1)-total labelling number λ2 (G) is at most ∆ + 2.
منابع مشابه
Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملOn the M-polynomial of planar chemical graphs
Let $G$ be a graph and let $m_{i,j}(G)$, $i,jge 1$, be the number of edges $uv$ of $G$ such that ${d_v(G), d_u(G)} = {i,j}$. The $M$-polynomial of $G$ is $M(G;x,y) = sum_{ile j} m_{i,j}(G)x^iy^j$. With $M(G;x,y)$ in hands, numerous degree-based topological indices of $G$ can be routinely computed. In this note a formula for the $M$-polynomial of planar (chemical) graphs which have only vertices...
متن کاملList coloring the square of sparse graphs with large degree
We consider the problem of coloring the squares of graphs of bounded maximum average degree, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbour receive different colors. Borodin et al. proved in 2004 and 2008 that the squares of planar graphs of girth at least seven and sufficiently large maximum degree ∆ are list (∆ + 1)-...
متن کاملL(h, 1)-labeling subclasses of planar graphs
L(h, 1)-labeling, h = 0, 1, 2, is a class of coloring problems arising from frequency assignment in radio networks, in which adjacent nodes must receive colors that are at least h apart while nodes connected by a two long path must receive different colors. This problem is NP-complete even when limited to planar graphs. Here, we focus on L(h, 1)-labeling restricted to regular tilings of the pla...
متن کامل(d, 1)-total Labelling of Planar Graphs with Large Girth and High Maximum Degree
The (d, 1)-total number λ T d (G) of a graph G is the width of the smallest range of integers that suffices to label the vertices and the edges of G so that no two adjacent vertices have the same label, no two incident edges have the same label and the difference between the labels of a vertex and its incident edges is at least d. This notion was introduced in Havet. In this talk, we present ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1105.1908 شماره
صفحات -
تاریخ انتشار 2011